Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo

Identifieur interne : 003253 ( Main/Exploration ); précédent : 003252; suivant : 003254

Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo

Auteurs : M. Köping-Högg Rd [Suède] ; Y. S. Mel'Nikova [Suède] ; K. M. V Rum [Norvège] ; B. Lindman [Suède] ; P. Artursson [Suède]

Source :

RBID : ISTEX:158B64CBEDC02494035FC452842D71135E0EC805

Descripteurs français

English descriptors

Abstract

Background: Chitosans of high molecular weights have emerged as efficient nonviral gene delivery systems, but the properties and efficiency of well‐defined low molecular weight chitosans (<5 kDa) have not been studied. We therefore characterized DNA complexes of such low molecular weight chitosans and related their physical shape and stability to their efficiency as gene delivery systems in vitro and in vivo. Methods: Individual complexes between six different chitosan oligomers (6‐, 8‐, 10‐, 12‐, 14‐ and 24‐mers) and fluorescence‐labeled T4 DNA were visualized and classified into six physical shapes using video‐enhanced fluorescence microscopy. The effects of chitosan chain length, charge ratio (+/−) and solvent properties (pH and ionic strength) on the stability and structure of the complexes were studied. Gene expression in vitro and in vivo were studied using a luciferase reporter gene. Results: Free DNA appeared as extended coils. Chitosan complexes had a variety of physical shapes depending on the experimental conditions. In general, the fraction of complexes that had nonaggregated, globular structures increased with increasing chain length of the chitosan oligomer, increasing charge ratio and reduction of pH (from 6.5 to 3.5). A further increase in charge ratio for globular complexes or a further reduction in pH (to 2.5) increased the fraction of aggregates, indicating a window where pharmaceutically desirable globules are obtained. Gene transfection efficiencies in vitro and in vivo were related to the physical shape and stability of the complexes. Only the 24‐mer formed stable complexes that gave a high level of gene expression comparable to that of high molecular weight ultrapure chitosan (UPC) in vitro and in vivo. Conclusions: Chitosan oligomers form complexes with DNA in a structure‐dependent manner. We conclude that the 24‐mer, which has more desirable physical properties than UPC, is more attractive as a gene delivery system than the conventional high molecular weight chitosans. Copyright © 2002 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/jgm.327


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo</title>
<author>
<name sortKey="Koping Gg Rd, M" sort="Koping Gg Rd, M" uniqKey="Koping Gg Rd M" first="M." last="Köping-Högg Rd">M. Köping-Högg Rd</name>
</author>
<author>
<name sortKey="Mel Nikova, Y S" sort="Mel Nikova, Y S" uniqKey="Mel Nikova Y" first="Y. S." last="Mel'Nikova">Y. S. Mel'Nikova</name>
</author>
<author>
<name sortKey="V Rum, K M" sort="V Rum, K M" uniqKey="V Rum K" first="K. M." last="V Rum">K. M. V Rum</name>
</author>
<author>
<name sortKey="Lindman, B" sort="Lindman, B" uniqKey="Lindman B" first="B." last="Lindman">B. Lindman</name>
</author>
<author>
<name sortKey="Artursson, P" sort="Artursson, P" uniqKey="Artursson P" first="P." last="Artursson">P. Artursson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:158B64CBEDC02494035FC452842D71135E0EC805</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1002/jgm.327</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-M7LCGCD1-9/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000180</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000180</idno>
<idno type="wicri:Area/Istex/Curation">000180</idno>
<idno type="wicri:Area/Istex/Checkpoint">000C58</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000C58</idno>
<idno type="wicri:doubleKey">1099-498X:2003:Koping Gg Rd M:relationship:between:the</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="RBID">pubmed:12539151</idno>
<idno type="wicri:Area/PubMed/Corpus">002474</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002474</idno>
<idno type="wicri:Area/PubMed/Curation">002474</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002474</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002303</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002303</idno>
<idno type="wicri:Area/Ncbi/Merge">000173</idno>
<idno type="wicri:Area/Ncbi/Curation">000173</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000173</idno>
<idno type="wicri:doubleKey">1099-498X:2003:Koping Hogg Rd M:relationship:between:the</idno>
<idno type="wicri:Area/Main/Merge">003288</idno>
<idno type="wicri:Area/Main/Curation">003253</idno>
<idno type="wicri:Area/Main/Exploration">003253</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo</title>
<author>
<name sortKey="Koping Gg Rd, M" sort="Koping Gg Rd, M" uniqKey="Koping Gg Rd M" first="M." last="Köping-Högg Rd">M. Köping-Högg Rd</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Pharmacy, Uppsala University, Uppsala</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mel Nikova, Y S" sort="Mel Nikova, Y S" uniqKey="Mel Nikova Y" first="Y. S." last="Mel'Nikova">Y. S. Mel'Nikova</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Physical Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University, Lund</wicri:regionArea>
<wicri:noRegion>Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="V Rum, K M" sort="V Rum, K M" uniqKey="V Rum K" first="K. M." last="V Rum">K. M. V Rum</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology, The Norwegian University of Science and Technology, Trondheim</wicri:regionArea>
<placeName>
<settlement type="city">Trondheim</settlement>
<region type="région" nuts="2">Trøndelag</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lindman, B" sort="Lindman, B" uniqKey="Lindman B" first="B." last="Lindman">B. Lindman</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Physical Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University, Lund</wicri:regionArea>
<wicri:noRegion>Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Artursson, P" sort="Artursson, P" uniqKey="Artursson P" first="P." last="Artursson">P. Artursson</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Pharmacy, Uppsala University, Uppsala</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Suède</country>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Correspondence address: Department of Pharmacy, Box 580, Uppsala University, SE‐751 23 Uppsala</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">The Journal of Gene Medicine</title>
<title level="j" type="alt">JOURNAL OF GENE MEDICINE, THE</title>
<idno type="ISSN">1099-498X</idno>
<idno type="eISSN">1521-2254</idno>
<imprint>
<biblScope unit="vol">5</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="130">130</biblScope>
<biblScope unit="page" to="141">141</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2003-02">2003-02</date>
</imprint>
<idno type="ISSN">1099-498X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1099-498X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adjuvants, Pharmaceutic (chemistry)</term>
<term>Adjuvants, Pharmaceutic (metabolism)</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Chitin (analogs & derivatives)</term>
<term>Chitin (chemistry)</term>
<term>Chitin (metabolism)</term>
<term>Chitosan</term>
<term>DNA (chemistry)</term>
<term>DNA (metabolism)</term>
<term>Gene Expression</term>
<term>Gene Transfer Techniques</term>
<term>Genes, Reporter</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Macromolecular Substances</term>
<term>Mice</term>
<term>Molecular Weight</term>
<term>Nucleic Acid Conformation</term>
<term>Polymers (chemistry)</term>
<term>Polymers (metabolism)</term>
<term>Sodium Chloride (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ()</term>
<term>ADN (métabolisme)</term>
<term>Adjuvants pharmaceutiques ()</term>
<term>Adjuvants pharmaceutiques (métabolisme)</term>
<term>Animaux</term>
<term>Chitine ()</term>
<term>Chitine (analogues et dérivés)</term>
<term>Chitine (métabolisme)</term>
<term>Chitosane</term>
<term>Chlorure de sodium ()</term>
<term>Concentration en ions d'hydrogène</term>
<term>Conformation d'acide nucléique</term>
<term>Expression des gènes</term>
<term>Gènes rapporteurs</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Masse moléculaire</term>
<term>Polymères ()</term>
<term>Polymères (métabolisme)</term>
<term>Souris</term>
<term>Structures macromoléculaires</term>
<term>Techniques de transfert de gènes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Chitin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Adjuvants, Pharmaceutic</term>
<term>Chitin</term>
<term>DNA</term>
<term>Polymers</term>
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adjuvants, Pharmaceutic</term>
<term>Chitin</term>
<term>DNA</term>
<term>Polymers</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Chitine</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN</term>
<term>Adjuvants pharmaceutiques</term>
<term>Chitine</term>
<term>Polymères</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acetate buffer</term>
<term>Acetylation</term>
<term>Aggregation</term>
<term>Animals</term>
<term>Assay</term>
<term>Cationic</term>
<term>Cell Line</term>
<term>Chain length</term>
<term>Charge ratio</term>
<term>Charge ratios</term>
<term>Chitosan</term>
<term>Chitosan chain length</term>
<term>Chitosan complexes</term>
<term>Chitosan oligomer</term>
<term>Chitosan oligomers</term>
<term>Chitosans</term>
<term>Cooperative effect</term>
<term>Copyright</term>
<term>Deionized</term>
<term>Deionized water</term>
<term>Gene</term>
<term>Gene Expression</term>
<term>Gene Transfer Techniques</term>
<term>Gene delivery</term>
<term>Gene delivery system</term>
<term>Gene delivery systems</term>
<term>Gene expression</term>
<term>Genes, Reporter</term>
<term>Globular</term>
<term>Globular structures</term>
<term>Globule</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Intratracheal administration</term>
<term>Ionic strength</term>
<term>John wiley sons</term>
<term>Luciferase</term>
<term>Luciferase gene expression</term>
<term>Luciferase reporter</term>
<term>Luciferase reporter gene</term>
<term>Lung protein</term>
<term>Macromolecular Substances</term>
<term>Mice</term>
<term>Molecular Weight</term>
<term>Molecular weight</term>
<term>Molecular weight chitosans</term>
<term>Monomer units</term>
<term>Mouse lungs</term>
<term>Nonviral</term>
<term>Nonviral gene delivery system</term>
<term>Nonviral gene delivery systems</term>
<term>Nucleic Acid Conformation</term>
<term>Oligomer</term>
<term>Oligomer concentration</term>
<term>Oligomers</term>
<term>Pdna</term>
<term>Pdna complexes</term>
<term>Physical shape</term>
<term>Physical stability</term>
<term>Plasmid</term>
<term>Positive charges</term>
<term>Previous studies</term>
<term>Retardation assay</term>
<term>Size distribution</term>
<term>Soluble</term>
<term>Soluble globules</term>
<term>Solvent properties</term>
<term>Stable complexes</term>
<term>Standard deviation</term>
<term>Transfection</term>
<term>Uorescence</term>
<term>Uorescence microscopy</term>
<term>Vivo</term>
<term>Weight chitosan</term>
<term>Weight chitosans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN</term>
<term>Adjuvants pharmaceutiques</term>
<term>Animaux</term>
<term>Chitine</term>
<term>Chitosane</term>
<term>Chlorure de sodium</term>
<term>Concentration en ions d'hydrogène</term>
<term>Conformation d'acide nucléique</term>
<term>Expression des gènes</term>
<term>Gènes rapporteurs</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Masse moléculaire</term>
<term>Polymères</term>
<term>Souris</term>
<term>Structures macromoléculaires</term>
<term>Techniques de transfert de gènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Background: Chitosans of high molecular weights have emerged as efficient nonviral gene delivery systems, but the properties and efficiency of well‐defined low molecular weight chitosans (<5 kDa) have not been studied. We therefore characterized DNA complexes of such low molecular weight chitosans and related their physical shape and stability to their efficiency as gene delivery systems in vitro and in vivo. Methods: Individual complexes between six different chitosan oligomers (6‐, 8‐, 10‐, 12‐, 14‐ and 24‐mers) and fluorescence‐labeled T4 DNA were visualized and classified into six physical shapes using video‐enhanced fluorescence microscopy. The effects of chitosan chain length, charge ratio (+/−) and solvent properties (pH and ionic strength) on the stability and structure of the complexes were studied. Gene expression in vitro and in vivo were studied using a luciferase reporter gene. Results: Free DNA appeared as extended coils. Chitosan complexes had a variety of physical shapes depending on the experimental conditions. In general, the fraction of complexes that had nonaggregated, globular structures increased with increasing chain length of the chitosan oligomer, increasing charge ratio and reduction of pH (from 6.5 to 3.5). A further increase in charge ratio for globular complexes or a further reduction in pH (to 2.5) increased the fraction of aggregates, indicating a window where pharmaceutically desirable globules are obtained. Gene transfection efficiencies in vitro and in vivo were related to the physical shape and stability of the complexes. Only the 24‐mer formed stable complexes that gave a high level of gene expression comparable to that of high molecular weight ultrapure chitosan (UPC) in vitro and in vivo. Conclusions: Chitosan oligomers form complexes with DNA in a structure‐dependent manner. We conclude that the 24‐mer, which has more desirable physical properties than UPC, is more attractive as a gene delivery system than the conventional high molecular weight chitosans. Copyright © 2002 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Norvège</li>
<li>Suède</li>
</country>
<region>
<li>East Middle Sweden</li>
<li>Svealand</li>
<li>Trøndelag</li>
</region>
<settlement>
<li>Trondheim</li>
<li>Uppsala</li>
</settlement>
<orgName>
<li>Université d'Uppsala</li>
</orgName>
</list>
<tree>
<country name="Suède">
<region name="Svealand">
<name sortKey="Koping Gg Rd, M" sort="Koping Gg Rd, M" uniqKey="Koping Gg Rd M" first="M." last="Köping-Högg Rd">M. Köping-Högg Rd</name>
</region>
<name sortKey="Artursson, P" sort="Artursson, P" uniqKey="Artursson P" first="P." last="Artursson">P. Artursson</name>
<name sortKey="Artursson, P" sort="Artursson, P" uniqKey="Artursson P" first="P." last="Artursson">P. Artursson</name>
<name sortKey="Artursson, P" sort="Artursson, P" uniqKey="Artursson P" first="P." last="Artursson">P. Artursson</name>
<name sortKey="Lindman, B" sort="Lindman, B" uniqKey="Lindman B" first="B." last="Lindman">B. Lindman</name>
<name sortKey="Mel Nikova, Y S" sort="Mel Nikova, Y S" uniqKey="Mel Nikova Y" first="Y. S." last="Mel'Nikova">Y. S. Mel'Nikova</name>
</country>
<country name="Norvège">
<region name="Trøndelag">
<name sortKey="V Rum, K M" sort="V Rum, K M" uniqKey="V Rum K" first="K. M." last="V Rum">K. M. V Rum</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003253 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003253 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:158B64CBEDC02494035FC452842D71135E0EC805
   |texte=   Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021